Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(11)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37999257

RESUMO

Salinity is considered to be a global problem and a severe danger to modern agriculture since it negatively impacts plants' growth and development at both cellular- and whole-plant level. However, cobalt (Co) and titanium (Ti), multifunctional non-essential micro-elements, play a crucial role in improving plant growth and development under salinity stress. In the current study, Co and Ti impact on the morphological, biochemical, nutritional, and metabolic profile of Pennisetum divisum plants under three salinity levels which were assessed. Two concentrations of Co (Co-1; 15.0 mg/L and Co-2; 25.0 mg/L), and two concentrations of Ti (Ti-1; 50.0 mg/L and Ti-2; 100.0 mg/L) were applied as foliar application to the P. divisum plants under salinity (S1; 200 mM, S2; 500 mM, and S3; 1000 mM) stress. The results revealed that various morphological, biochemical, and metabolic processes were drastically impacted by the salinity-induced methylglyoxal (MG) stress. The excessive accumulation of salt ions, including Na+ (1.24- and 1.21-fold), and Cl- (1.53- and 1.15-fold) in leaves and roots of P. divisum, resulted in the higher production of MG (2.77- and 2.95-fold) in leaves and roots under severe (1000 mM) salinity stress, respectively. However, Ti-treated leaves showed a significant reduction in ionic imbalance and MG concentrations, whereas considerable improvement was shown in K+ and Ca2+ under salinity stress, and Co treatment showed downregulation of MG content (26, 16, and 14%) and improved the antioxidant activity, such as a reduction in glutathione (GSH), oxidized glutathione (GSSG), Glutathione reductase (GR), Glyoxalase I (Gly I), and Glyoxalase II (Gly II) by up to 1.13-, 1.35-, 3.75-, 2.08-, and 1.68-fold under severe salinity stress in P. divisum roots. Furthermore, MG-induced stress negatively impacted the metabolic profile and antioxidants activity of P. divisum's root and leaves; however, Co and Ti treatment considerably improved the biochemical processes and metabolic profile in both underground and aerial parts of the studied plants. Collectively, the results depicted that Co treatment showed significant results in roots and Ti treatment presented considerable changes in leaves of P. divism under salinity stress.

2.
Metabolites ; 13(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37110169

RESUMO

We investigated biochar-induced drought tolerance in Leptocohloa fusca (Kallar grass) by exploring the plant defense system at physiological level. L. fusca plants were exposed to drought stress (100%, 70%, and 30% field capacity), and biochar (BC), as an organic soil amendment was applied in two concentrations (15 and 30 mg kg-1 soil) to induce drought tolerance. Our results demonstrated that drought restricted the growth of L. fusca by inhibiting shoot and root (fresh and dry) weight, total chlorophyll content and photosynthetic rate. Under drought stress, the uptake of essential nutrients was also limited due to lower water supply, which ultimately affected metabolites including amino and organic acids, and soluble sugars. In addition, drought stress induced oxidative stress, which is evidenced by the higher production of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide ion (O2-), hydroxyl ion (OH-), and malondialdehyde (MDA). The current study revealed that stress-induced oxidative injury is not a linear path, since the excessive production of lipid peroxidation led to the accumulation of methylglyoxal (MG), a member of reactive carbonyl species (RCS), which ultimately caused cell injury. As a consequence of oxidative-stress induction, the ascorbate-glutathione (AsA-GSH) pathway, followed by a series of reactions, was activated by the plants to reduce ROS-induced oxidative damage. Furthermore, biochar considerably improved plant growth and development by mediating metabolites and soil physio-chemical status.

3.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070430

RESUMO

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


Assuntos
Agricultura/métodos , Sistemas CRISPR-Cas , Produtos Agrícolas/genética , Edição de Genes/métodos , Genoma de Planta , Melhoramento Vegetal/métodos , Grão Comestível/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
4.
GM Crops Food ; 12(2): 627-646, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34034628

RESUMO

Recently, there has been a remarkable increase in rice production owing to genetic improvement and increase in application of synthetic fertilizers. For sustainable agriculture, there is dire need to maintain a balance between profitability and input cost. To meet the steady growing demands of the farming community, researchers are utilizing all available resources to identify nutrient use efficient germplasm, but with very little success. Therefore, it is essential to understand the underlying genetic mechanism controlling nutrients efficiency, with the nitrogen use efficiency (NUE) being the most important trait. Information regarding genetic factors controlling nitrogen (N) transporters, assimilators, and remobilizers can help to identify candidate germplasms via high-throughput technologies. Large-scale field trials have provided morphological, physiological, and biochemical trait data for the detection of genomic regions controlling NUE. The functional aspects of these attributes are time-consuming, costly, labor-intensive, and less accurate. Therefore, the application of novel plant breeding techniques (NPBTs) with context to genome engineering has opened new avenues of research for crop improvement programs. Most recently, genome editing technologies (GETs) have undergone enormous development with various versions from Cas9, Cpf1, base, and prime editing. These GETs have been vigorously adapted in plant sciences for novel trait development to insure food quantity and quality. Base editing has been successfully applied to improve NUE in rice, demonstrating the potential of GETs to develop germplasms with improved resource use efficiency. NPBTs continue to face regulatory setbacks in some countries due to genome editing being categorized in the same category as genetically modified (GM) crops. Therefore, it is essential to involve all stakeholders in a detailed discussion on NPBTs and to formulate uniform policies tackling biosafety, social, ethical, and environmental concerns. In the current review, we have discussed the genetic mechanism of NUE and NPBTs for crop improvement programs with proof of concepts, transgenic and GET application for the development of NUE germplasms, and regulatory aspects of genome edited crops with future directions considering NUE.


Assuntos
Oryza , Produtos Agrícolas/genética , Edição de Genes/métodos , Nitrogênio , Oryza/genética , Melhoramento Vegetal/métodos
5.
Int J Mol Sci ; 20(17)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466256

RESUMO

One of the most chronic constraints to crop production is the grain yield reduction near the crop harvest stage by lodging worldwide. This is more prevalent in cereal crops, particularly in wheat and rice. Major factors associated with lodging involve morphological and anatomical traits along with the chemical composition of the stem. These traits have built up the remarkable relationship in wheat and rice genotypes either prone to lodging or displaying lodging resistance. In this review, we have made a comparison of our conceptual perceptions with foregoing published reports and proposed the fundamental controlling techniques that could be practiced to control the devastating effects of lodging stress. The management of lodging stress is, however, reliant on chemical, agronomical, and genetic factors that are reducing the risk of lodging threat in wheat and rice. But, still, there are many questions remain to be answered to elucidate the complex lodging phenomenon, so agronomists, breeders, physiologists, and molecular biologists require further investigation to address this challenging problem.


Assuntos
Oryza/genética , Melhoramento Vegetal/métodos , Estresse Fisiológico , Triticum/genética , Oryza/fisiologia , Característica Quantitativa Herdável , Triticum/fisiologia
6.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791357

RESUMO

Grain quality improvement is a key target for rice breeders, along with yield. It is a multigenic trait that is simultaneously influenced by many factors. Over the past few decades, breeding for semi-dwarf cultivars and hybrids has significantly contributed to the attainment of high yield demands but reduced grain quality, which thus needs the attention of researchers. The availability of rice genome sequences has facilitated gene discovery, targeted mutagenesis, and revealed functional aspects of rice grain quality attributes. Some success has been achieved through the application of molecular markers to understand the genetic mechanisms for better rice grain quality; however, researchers have opted for novel strategies. Genomic alteration employing genome editing technologies (GETs) like clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) for reverse genetics has opened new avenues of research in the life sciences, including for rice grain quality improvement. Currently, CRISPR/Cas9 technology is widely used by researchers for genome editing to achieve the desired biological objectives, because of its simple targeting. Over the past few years many genes that are related to various aspects of rice grain quality have been successfully edited via CRISPR/Cas9 technology. Interestingly, studies on functional genomics at larger scales have become possible because of the availability of GETs. In this review, we discuss the progress made in rice by employing the CRISPR/Cas9 editing system and its eminent applications. We also elaborate possible future avenues of research with this system, and our understanding regarding the biological mechanism of rice grain quality improvement.


Assuntos
Sistemas CRISPR-Cas , Grão Comestível/genética , Grão Comestível/normas , Edição de Genes , Oryza/genética , Qualidade dos Alimentos , Genoma de Planta , Genômica , Mutagênese , Valor Nutritivo , Oryza/metabolismo , Melhoria de Qualidade , Amido/metabolismo
7.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696055

RESUMO

Salt stress is one of the key abiotic stresses causing huge productivity losses in rice. In addition, the differential sensitivity to salinity of different rice genotypes during different growth stages is a major issue in mitigating salt stress in rice. Further, information on quantitative proteomics in rice addressing such an issue is scarce. In the present study, an isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative protein quantification was carried out to investigate the salinity-responsive proteins and related biochemical features of two contrasting rice genotypes-Nipponbare (NPBA, japonica) and Liangyoupeijiu (LYP9, indica), at the maximum tillering stage. The rice genotypes were exposed to four levels of salinity: 0 (control; CK), 1.5 (low salt stress; LS), 4.5 (moderate salt stress; MS), and 7.5 g of NaCl/kg dry soil (high salt stress, HS). The iTRAQ protein profiling under different salinity conditions identified a total of 5340 proteins with 1% FDR in both rice genotypes. In LYP9, comparisons of LS, MS, and HS compared with CK revealed the up-regulation of 28, 368, and 491 proteins, respectively. On the other hand, in NPBA, 239 and 337 proteins were differentially upregulated in LS and MS compared with CK, respectively. Functional characterization by KEGG and COG, along with the GO enrichment results, suggests that the differentially expressed proteins are mainly involved in regulation of salt stress responses, oxidation-reduction responses, photosynthesis, and carbohydrate metabolism. Biochemical analysis of the rice genotypes revealed that the Na⁺ and Cl- uptake from soil to the leaves via the roots was increased with increasing salt stress levels in both rice genotypes. Further, increasing the salinity levels resulted in increased cell membrane injury in both rice cultivars, however more severely in NPBA. Moreover, the rice root activity was found to be higher in LYP9 roots compared with NPBA under salt stress conditions, suggesting the positive role of rice root activity in mitigating salinity. Overall, the results from the study add further insights into the differential proteome dynamics in two contrasting rice genotypes with respect to salt tolerance, and imply the candidature of LYP9 to be a greater salt tolerant genotype over NPBA.


Assuntos
Marcação por Isótopo/métodos , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cloretos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Genótipo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Sódio/metabolismo , Solo/química
8.
Sci Rep ; 8(1): 14523, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266907

RESUMO

Stigma exsertion is a key determinant to increase the efficiency of commercial hybrid rice seed production. The major quantitative trait locus (QTL) qSE7 for stigma exsertion rate was previously detected on the chromosome 7 using 75 Chromosome Segment Substitution Lines (CSSLs) derived from a cross between the high stigma exsertion indica maintainer XieqingzaoB (XQZB) and low stigma exsertion indica restorer Zhonghui9308 (ZH9308). The C51 line, a CSSL population with an introgression from XQZB, was backcrossed with ZH9308 to produce the secondary F2 (BC5F2) and F2:3 (BC5F2:3) populations. As a result, the Near Isogenic Line (NIL qSE7XB) was developed. Analysis indicated qSE7 acted as a single Mendelian factor and decreased the stigma exsertion. We hypothesized qSE7 regulates single, dual, and total stigma exsertion rate, provided experimental support. qSE7 was mapped and localized between RM5436 and RM5499 markers, within a physical distance of 1000-kb. With use of new insertion-deletion (InDel) markers and analysis of the heterozygous and phenotypic data, it was ultimately dissected to a 322.9-kb region between InDel SER4-1 and RM5436. The results are useful for additional identification and isolation of this candidate gene controlling stigma exsertion rate, and provide a basis for further fine mapping, gene cloning, and Marker Assisted Selection (MAS) breeding later.


Assuntos
Cromossomos de Plantas/genética , Flores/crescimento & desenvolvimento , Oryza/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Mutação INDEL , Fenótipo
9.
Int J Mol Sci ; 19(5)2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29757987

RESUMO

Phosphorus (P) is the essential macro-element supporting rice productivity. Quantitative trait loci (QTL) underlying related traits at the seedling stage under two different phosphorus levels was investigated in rice using a population of 76 Chromosomal Sequence Substitution Lines (CSSLs) derived from a cross between the maintainer variety XieqingzaoB (P stress tolerant) and the restorer variety Zhonghui9308 (P stress sensitive); the parents of super hybrid rice Xieyou9308. A genetic linkage map with 120 DNA marker loci was constructed. At logarithmic odd (LOD) value of 2.0, a total of seven QTLs were detected for studied traits under two P levels and their relative ratio. The LOD values ranged from 2.00 to 3.32 and explaining 10.82% to 18.46% of phenotypic variation. Three QTLs were detected under low phosphorus (P-), one under normal (P⁺) and three under their relative ratio (P-/P⁺) on the rice chromosomes 3, 5, 6, 8 and 10. No significant QTLs were found for shoot dry weight (SDW) and total dry weight (TDW). The pleiotropic QTLs influencing root number (qRN5) and root dry weight (qRDW5) as novel QTLs under P- level were detected near marker RM3638 on chromosome 5, which considered to directly contributing to phosphorus deficiency tolerance in rice. These QTLs need further analysis, including the fine mapping and cloning, which may use in molecular marker assisted breeding.


Assuntos
Genômica , Oryza/fisiologia , Fósforo/deficiência , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plântula/genética , Plântula/metabolismo , Adaptação Biológica , Quimera , Genômica/métodos , Genótipo , Fenótipo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Estresse Fisiológico
10.
Front Plant Sci ; 8: 1818, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163563

RESUMO

The rate of stigma exsertion (SE) is an important trait in rice breeding because the efficiency of hybrid rice seed production can be improved by increasing the percentage of stigmas that exsert. In this study, we developed a near isogenic line (NIL) from two parents, XieqingzaoB (XQZB) and Zhonghoi9308 (ZH9308), which have high and low SE rates in that order. In our previous study, we employed 75 chromosome segment substitution lines (CSSLs) and analyzed quantitative trait loci (QTLs) for their influence on SE rate. The single gene QTL (qSE11), which is located on chromosome 11, was responsible for this trait. In this study, we focused on one of the CSSLs (C65), namely, the NIL (qSE11XB). It contains an introgression segment of XQZB in the genetic background of ZH9308, and exhibits a significantly higher SE rate than that of the parents. We demonstrated that qSE11 regulated both the single and the dual SE rates. They both contribute to the total SE rate. Genetic analysis revealed that qSE11 acted as a single Mendelian factor and that the allele from XQZB increased the SE rate. The validity of our conclusions was established when C65 was used to develop secondary F2 (BC5F2) and F2:3 (BC5F2:3) populations by backcrossing to ZH9308, with subsequent selfing. We entered 3600 plants from the F2 population and 3200 from the F2:3 populations into a genetic dissection program and dissected the major QTL qSE11 to a 350.7-kb region located on chromosome 11. This study will contribute to the future isolation of candidate genes of SE and will play a vital role in future hybrid rice seed production programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...